## Vectors - magnitude and direction

momentum
impulse force
displacement velocity

Scalars - magnitude only work energy spring constant time speed

## Momentum: $p=m v$

Impulse (change in momentum): $J=F_{\text {net }} t=\Delta p$

## Law of Conservation of Momentum

$$
p_{\text {before }}=p_{\text {after }}
$$

Elastic Collision: $m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}+m_{2} v_{2}$


Inelastic Collision: $m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v$


Separation: $0=m_{1} v_{1}+m_{2} v_{2}$


Systems in which two objects collide and stop can be modeled as elastic, inelastic, or a 'reverse' separation

You must be especially careful with signs of velocities in conservation of momentum problems!

## Momentum and Energy Review Map

## Work/Energy Principle

Energy is the ability to do work... Work results in a change in total energy

$$
W=F d=\Delta E_{T}
$$

For work to be done - need force AND motion


Work done vertically $\rightarrow$ Gravitational Potential Energy (and/or Heat)


$$
\text { If frictionless, all work } \rightarrow P E
$$

If there is a difference between PE gained and work done some work was done against friction (HEAT)

$$
\Delta P E=m g \Delta h
$$

Work done on a spring $\rightarrow$ Spring Potential Energy (and/or Heat)


If frictionless, all work $\rightarrow P E_{S}$
If there is a difference between $P E_{s}$ gained and work done some work was done against friction (HEAT)
$P E_{S}=1 / 2 k x^{2}$

## Pendulum

Period (time for one complete oscillation) of a pendulum depends on the length of its string - not on mass or release position


## Power

Rate at which work is done or energy is used

$$
P=\frac{W}{t}=\frac{F d}{t}=F v
$$

## Law of Conservation of Energy <br> $$
E_{T}=P E+K E+Q
$$

PE and KE are forms of mechanical energy Heat is non-mechanical, so frictionless systems perfectly conserve mechanical energy!

Cliff Diver - assuming no air resistance...

$$
\mathrm{PE}_{\mathrm{TOP}}=\mathrm{KE}_{\text {Bоттом }}
$$



Sliding Down Slope - if frictionless..

$$
\mathrm{PE}_{\mathrm{TOP}}+\mathrm{KE}_{\mathrm{TOP}}=K \mathrm{~K}_{\text {BOтTом }}
$$

If not frictionless...
$P E_{\text {TOP }}+K \mathrm{E}_{\text {TOP }}=K \mathrm{E}_{\text {воттом }}+\mathrm{Q}$ (work done by friction)


Spring Toy - if no energy is lost $\mathrm{PE}_{\mathrm{S}} \rightarrow \mathrm{KE}_{\mathrm{MAX}} \rightarrow \mathrm{PE}_{\mathrm{TOP}}$


